Experimental interaction of Escherichia Coli on graphene oxide applying antibacterial group-functional reduction properties

Authors

DOI:

https://doi.org/10.35381/s.v.v5i1.1589

Keywords:

Escherichia coli, Escherichia coli Proteins, Laboratory Experiment. (Source, DeCS).

Abstract

Objective: to determine an equation that omits the experimental step and verifies the interaction of GRAM NEGATIVE bacteria (Escherichia Coli) with graphene oxide (GO), evaluating its bactericidal properties by having its molecular structures configured. Method: Quasi-experimental. Results: Graphene oxide is a promising material for biomedical applications since when functionalized it can be directed to the cells where it should exert its action, besides being eliminated quickly in the organism. The biological properties of graphene derivatives have not yet been thoroughly examined, therefore, their cytotoxicity should be studied in depth. Conclusion: Graphene oxide generates better results by having a bacterial sensitivity disk with good isolation process.

Downloads

Download data is not yet available.

References

Daniyal M, Liu B, Wang W. Comprehensive Review on Graphene Oxide for Use in Drug Delivery System. Curr Med Chem. 2020;27(22):3665-3685. doi: 10.2174/13816128256661902011296290

Manousi N, Rosenberg E, Deliyanni EA, Zachariadis GA. Sample Preparation Using Graphene-Oxide-Derived Nanomaterials for the Extraction of Metals. Molecules. 2020;25(10):2411. doi:10.3390/molecules25102411

Nichols F, Chen S. Graphene Oxide Quantum Dot-Based Functional Nanomaterials for Effective Antimicrobial Applications. Chem Rec. 2020;20(12):1505-1515. doi:10.1002/tcr.202000090

Yildiz G, Bolton-Warberg M, Awaja F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomater. 2021;131:62-79. doi:10.1016/j.actbio.2021.06.047

Raslan A, Saenz Del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharm. 2020;580:119226. doi:10.1016/j.ijpharm.2020.119226

Aguila IP, Velázquez-López L, Goycochea-Robles MAV, Angulo-Angulo F, Peña JE. Multimedia education to support management of type 2 diabetes patients. A quasi-experimental study [La educación multimedia como apoyo en el manejo de pacientes con diabetes tipo 2. Estudio cuasi experimental]. Cir Cir. 2018;86(5):404-411. doi:10.24875/CIRU.18000119

Jang J, Hur HG, Sadowsky MJ, Byappanahalli MN, Yan T, Ishii S. Environmental Escherichia coli: ecology and public health implications-a review. J Appl Microbiol. 2017;123(3):570-581. doi:10.1111/jam.13468

Paitan Y. Current Trends in Antimicrobial Resistance of Escherichia coli. Curr Top Microbiol Immunol. 2018;416:181-211. doi:10.1007/82_2018_110

Mazzariol A, Bazaj A, Cornaglia G. Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: a review. J Chemother. 2017;29(sup1):2-9. doi:10.1080/1120009X.2017.1380395

Wassenaar TM. E. coli and colorectal cancer: a complex relationship that deserves a critical mindset. Crit Rev Microbiol. 2018;44(5):619-632. doi:10.1080/1040841X.2018.1481013

Letuta UG, Berdinskiy VL. Biological effects of static magnetic fields and zinc isotopes on E. coli bacteria. Bioelectromagnetics. 2019;40(1):62-73. doi:10.1002/bem.22162

Negrete A, Shiloach J. Improving E. coli growth performance by manipulating small RNA expression. Microb Cell Fact. 2017;16(1):198. Published 2017 Nov 14. doi:10.1186/s12934-017-0810-x

Raad SH, Atlasbaf Z. Broadband/multiband absorption through surface plasmon engineering in graphene-wrapped nanospheres. Appl Opt. 2020;59(28):8909-8917. doi:10.1364/AO.400775

Brown AT, Lin J, Vizuet JP, Thomas MC, Balkus KJ. Graphene-like Carbon from Calcium Hydroxide. ACS Omega. 2021;6(46):31066-31076. Published 2021 Nov 10. doi:10.1021/acsomega.1c04305

Raja Jamaluddin RZA, Tan LL, Chong KF, Heng LY. An electrochemical DNA biosensor fabricated from graphene decorated with graphitic nanospheres. Nanotechnology. 2020;31(48):485501. doi:10.1088/1361-6528/abab2e

Wang ZZ, Wu PF, Yue HY, et al. Electrochemical Determination of Levodopa Using Zinc Sulfide Nanospheres-Reduced Graphene Oxide. J Nanosci Nanotechnol. 2021;21(11):5666-5672. doi:10.1166/jnn.2021.19486

He J, Jiang L, Chen Y, Luo Z, Yan Z, Wang J. Facile direct synthesis of graphene-wrapped ZnO nanospheres from cyanobacterial cells. Chem Commun (Camb). 2019;55(76):11410-11413. doi:10.1039/c9cc04951g

Atchudan R, Edison TNJI, Perumal S, Karthikeyan D, Lee YR. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J Photochem Photobiol B. 2016;162:500-510. doi:10.1016/j.jphotobiol.2016.07.019

Peng Y, Ye G, Du Y, et al. Fe3O4 hollow nanospheres on graphene oxide as an efficient heterogeneous photo-Fenton catalyst for the advanced treatment of biotreated papermaking effluent. Environ Sci Pollut Res Int. 2021;28(29):39199-39209. doi:10.1007/s11356-021-13458-9

Kang W, Cui Y, Qin L, et al. A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. J Hazard Mater. 2020;392:122499. doi:10.1016/j.jhazmat.2020.122499

Blount ZD. The unexhausted potential of E. coli. Elife. 2015;4:e05826. Published 2015 Mar 25. doi:10.7554/eLife.05826

Leimbach A, Hacker J, Dobrindt U. E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Curr Top Microbiol Immunol. 2013;358:3-32. doi:10.1007/82_2012_303

Green R, Rogers EJ. Transformation of chemically competent E. coli. Methods Enzymol. 2013;529:329-336. doi:10.1016/B978-0-12-418687-3.00028-8

Crowe SE. Helicobacter pylori Infection. N Engl J Med. 2019;380(12):1158-1165. doi:10.1056/NEJMcp1710945

Du LJ, Chen BR, Kim JJ, Kim S, Shen JH, Dai N. Helicobacter pylori eradication therapy for functional dyspepsia: Systematic review and meta-analysis. World J Gastroenterol. 2016;22(12):3486-3495. doi:10.3748/wjg.v22.i12.3486

Fischbach W, Malfertheiner P. Helicobacter Pylori Infection. Dtsch Arztebl Int. 2018;115(25):429-436. doi:10.3238/arztebl.2018.0429

Grant JJ, Pillai SC, Hehir S, McAfee M, Breen A. Biomedical Applications of Electrospun Graphene Oxide. ACS Biomater Sci Eng. 2021;7(4):1278-1301. doi:10.1021/acsbiomaterials.0c01663

Umekar MS, Bhusari GS, Potbhare AK, et al. Bioinspired Reduced Graphene Oxide Based Nanohybrids for Photocatalysis and Antibacterial Applications. Curr Pharm Biotechnol. 2021;22(13):1759-1781. doi:10.2174/1389201022666201231115826

Rai VK, Mahata S, Kashyap H, Singh M, Rai A. Bio-reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis. Curr Org Synth. 2020;17(3):164-191. doi:10.2174/1570179417666200115110403

Palmieri V, Perini G, De Spirito M, Papi M. Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. Nanoscale Horiz. 2019;4(2):273-290. doi:10.1039/c8nh00318a

Published

2022-02-17

How to Cite

Viteri-Rodríguez, J. A., & Siza-Gualpa, R. F. (2022). Experimental interaction of Escherichia Coli on graphene oxide applying antibacterial group-functional reduction properties. Revista Arbitrada Interdisciplinaria De Ciencias De La Salud. Salud Y Vida, 5(1), 62–77. https://doi.org/10.35381/s.v.v5i1.1589

Issue

Section

Original breve

Most read articles by the same author(s)

1 2 3 > >>