Energy optimization in academic environments through IoT and machine learning
DOI:
https://doi.org/10.35381/i.p.v8i14.4882Keywords:
Energy optimization, Internet of things, machine learning, electrical consumption prediction, academic environments, (UNESCO Thesaurus).Abstract
ABSTRACT
The study aimed to optimize energy consumption in an academic environment by integrating IoT technologies and machine learning techniques. A monitoring system was designed and implemented in the Information Technology career room, using energy measurement modules and ESP32 nodes with environmental and presence sensors, the data was recorded on a real-time basis. Subsequently, a predictive model based on Random Forest was applied to analyse consumption patterns and contrast them with the effective occupation of the space. The model achieved adequate performance and allowed the identification of periods of unjustified consumption. Based on the simulated scenarios, a daily saving of close to 2.75 kWh was estimated, equivalent to approximately 60 kWh per month. In conclusion, the system proved to be a viable and scalable alternative, capable of being replicated in other classrooms, laboratories and similar academic spaces.
Downloads
References
Ali, A., Muqeet, H. A., Khan, T., Hussain, A., Waseem, M., & Niazi, K. A. K. (2023). IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study. Energies, 16(4), 1863. https://doi.org/10.3390/en16041863
Cujilema Paguay, J. A., Hidalgo Brito, G. A., Hernández Rojas, D. L., & Cartuche Calva, J. J. (2023). Secure home automation system based on ESP-NOW mesh network, MQTT and Home Assistant platform. IEEE, 21(7), 829-838. https://doi.org/10.1109/TLA.2023.10244182
Baek, M., & Seo, Y. (2025). Hybrid forecasting of university electricity demand using time series and deep learning. Energy and Buildings, 347(Part B), 116400. https://doi.org/10.1016/j.enbuild.2025.116400
Barragán-Charry, J., Silva-Londoño, J. J., Garcés-Quintero, C. S., Jaramillo-Ramírez, O. C., Hoyos-Daza, F., y Bravo-Gómez, L. C. (2022). Sistema de monitoreo de señales eléctricas y control automático para eficiencia energética con integración IoT. Producción + Limpia, 17(2), 53–71. https://doi.org/10.22507/pml.v17n2a4
Cartuche Calva, J. J., Hernández Rojas, D. L., Morocho Román, R. F., y Radicelli García, C. D. (2023). Seguridad IoT: Principales amenazas en una taxonomía de activos. Revista Hamut’ay, 7(2), 51-59. http://dx.doi.org/10.21503/hamu.v7i3.2192
Colmenares-Quintero, R. F., Baquero-Almazo, M., Kasperczyk, D., Stansfield, K. E., y Colmenares-Quintero, J. C. (2024). Analysis of IoT technologies suitable for remote areas in Colombia: Conceptual design of an IoT system for monitoring and managing distributed energy systems. Cleaner Engineering and Technology, 21, 100783. https://doi.org/10.1016/j.clet.2024.100783
Dinmohammadi, F., Farook, A. M., y Shafiee, M. (2025). Improving energy efficiency in buildings with an IoT-based smart monitoring system. Energies, 18(5), 1269. https://doi.org/10.3390/en18051269
El-Khozondar, H. J., Mtair, S. Y., Qoffa, K. O., Qasem, O. I., Munyarawi, A. H., Nassar, Y. F., Bayoumi, E. H. E., & El Ahim, A. A. E. B. (2024). A smart energy monitoring system using ESP32 microcontroller. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 9, 100666. https://doi.org/10.1016/j.prime.2024.100666
Eltamaly, A. M., Alotaibi, M. A., Alolah, A. I., & Ahmed, M. A. (2021). IoT-Based Hybrid Renewable Energy System for Smart Campus. Sustainability, 13(15), 8555. https://doi.org/10.3390/su13158555
Flores, J., Lima, I., y Hernández, D. (2025). Desarrollo del firmware IoT con Rust aplicando IA. Revista Estudios y Perspectivas, 5(2), 1993-2017. https://doi.org/10.61384/r.c.a..v5i2.1255
Jiang, Q., & Kurnitski, J. (2023). A machine-learning-driven framework for predicting electricity consumption in academic buildings. Sustainable Cities and Society, 97, 104723. https://doi.org/10.1016/j.scs.2023.104723
Kumar Das, D. (2025). Integrating IoT and AI for sustainable energy-efficient smart buildings. Sustainability, 17(22), 10313. https://doi.org/10.3390/su172210313
Mazon-Olivo, B., y Pan, A. (2024). Internet of Things: State-of-the-art, computing paradigms and reference architectures. IEEE Latin America Transactions, 20(1), 49-63. https://latamt.ieeer9.org/index.php/transactions/article/view/5037
Paladines-Condoy, J., Vera-Macías, J., y Hernández, D. (2024). Creación de un IDE web de gestión de firmware multilenguaje para un dispositivo IoT ESP32. IBEROTECS, 4(1), 77-87. https://tech.iberojournals.com/index.php/IBEROTECS/article/view/643
Peña de Loza, F., y Ibarra-Villegas, F. J. (2024). Implementación de tecnologías IoT para la reducción del consumo energético en oficinas inteligentes. Revista de Ciencias Tecnológicas, 7(3), e332. https://doi.org/10.37636/recit.v7n3e332
Poyyamozhi, M., Murugesan, B., Rajamanickam, N., Shorfuzzaman, M., & Aboelmagd, Y. (2024). IoT—A Promising Solution to Energy Management in Smart Buildings: A Systematic Review, Applications, Barriers, and Future Scope. Buildings, 14(11), 3446. https://doi.org/10.3390/buildings14113446
Yilmaz, S., y Kose, S. (2024). Sensor-based anomaly detection for electricity consumption using Random Forest models. Energy Informatics, 7(1), 28. https://doi.org/10.1186/s42162-024-00331-1
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Elkin Alexander Morocho-Belduma, Blade Steven Masache-Carrera, Dixys Hernandez-Rojas, Bertha Mazon-Olivo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : Esta licencia permite a los reutilizadores distribuir, remezclar, adaptar y construir sobre el material en cualquier medio o formato solo con fines no comerciales, y solo siempre y cuando se dé la atribución al creador. Si remezcla, adapta o construye sobre el material, debe licenciar el material modificado bajo términos idénticos.
OAI-PMH URL: https://fundacionkoinonia.com.ve/ojs/index.php/ingeniumetpotentia/oai





