Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

https://doi.org/10.35381/a.g.v6i11.4376

Raviol de sangrecita y bazo de bovino: Aportando proteínas y hierro en la población escolar

Bovine spleen and sangrecita ravioli and bovine spleen: Providing protein and iron in the school population

Brunilda Edith León-Manrique

<u>bleon@unjfsc.edu.pe</u>

Universidad Nacional José Faustino Sánchez Carrión, Huacho, Lima

Perú

https://orcid.org/0000-0002-3423-0774

María Del Rosario Farromeque-Meza

mfarromeque@unjfsc.edu.pe
Universidad Nacional José Faustino Sánchez Carrión, Huacho, Lima
Perú

https://orcid.org/0000-0001-8747-568X

Rodolfo Willian Dextre-Mendoza

<u>rdextre@unjfsc.edu.pe</u>

Universidad Nacional José Faustino Sánchez Carrión, Huacho, Lima
Perú

https://orcid.org/0000-0003-0735-4269

Oscar Otilio Osso-Arri
oosso@unjfsc.edu.pe
Universidad Nacional José Faustino Sánchez Carrión, Huacho, Lima
Perú
https://orcid.org/0000-0003-1301-0673

Recibido: 18 de agosto 2024 Revisado: 10 de septiembre 2024 Aprobado: 05 de diciembre 2024 Publicado: 01 de enero 2025

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

RESUMEN

En las provincias de la región de Lima, las condiciones ecológicas y socioeconómicas, la malnutrición y anemia son indicadores de una inadecuada nutrición. En tal sentido el objetivo general de esta investigación fue realizar un estudio sobre el raviol de sangrecita y bazo de bovino que contribuya aportando proteínas y hierro en la población escolar. El método se desarrolló desde el enfoque cuantitativo, orientación descriptiva, explicativo, transversal y prospectiva, analizó a 62 escolares del distrito de Huacho, con especial atención en un grupo de 05 a 12 años de edad. Se observó que el raviol de sangrecita y bazo de bovino elaborado es de mejor calidad nutricional y mayor aporte de nutrientes que los embutidos comerciales. Se concluye que, la variedad de platos servidos con arroz chaufa, tallarines, causa rellena y arroz con frijoles elaborados con raviol de sangrecita, son una opción nutritiva y agradable para la alimentación escolar.

Descriptores: Bazo de bovino; anemia; proteína; hierro; escolar. (Tesauro AGROVOC).

ABSTRACT

In the provinces of the Lima region, ecological and socioeconomic conditions, malnutrition and anemia are indicators of inadequate nutrition. In this sense, the general objective of this research was to carry out a study on the ravioli of bovine sangrecita and spleen that contributes proteins and iron in the school population. The method was developed from the quantitative approach, descriptive orientation, explanatory, cross-sectional and prospective, analyzed 62 schoolchildren from the district of Huacho, with special attention to a group of 05 to 12 years of age. It was observed that the ravioli made with bovine blood and spleen is of better nutritional quality and provides more nutrients than commercial sausages. It is concluded that the variety of dishes served with chaufa rice, noodles, stuffed cause and rice with beans made with ravioli of sangrecita, are a nutritious and pleasant option for school meals.

Descriptors: Bovine pleen; anemia; protein; iron; scholar. (AGROVOC Thesaurus).

Año VII. Vol. 7. Nº12. Enero – Junio. 2025

Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K). Santa Ana de Coro, Venezuela.

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

INTRODUCCIÓN

En las provincias de la región de Lima, la malnutrición y anemia son indicadores de una

inadecuada nutrición por deficiente ingesta de proteínas y hierro en la alimentación. Por

tanto, existe una alta probabilidad de que estos problemas eleven la morbimortalidad en

poblaciones más vulnerables como son los niños, gestantes y adultos mayores. La

anemia tiene un impacto negativo en el desarrollo físico e intelectual en los niños (Arcaya

Moncada et al., 2020; Rodrigo Barboza et al., 2023; Ruiz Aquino et al., 2022).

En tal sentido, el flagelo de la anemia en la población infantil y juvenil de la región es muy

crítico en particular en la población periurbana y rural, lo cual motivó la búsqueda de

productos innovadores como el caso las galletas antianémicas (Anaya González et al.,

2020; Reyes Narváez, 2022; Zapata, 2024). Al respecto, la prevalencia de anemia en el

Perú, en menores de tres años durante el 2023, fue de 43,1% con una mayor incidencia

en el sector rural con 50,3% y un 40,2% del área urbana (Instituto Nacional de Estadística

e Informática, 2024).

Igualmente, se planteó que la desnutrición crónica, y su prevalencia en niños menores

de cinco años fue de 11,5%, con mayor incidencia en el sector rural con 0,3% y 8,1% en

el área urbana. Por otro lado, según las proyecciones para el año 2030, el 8% de la

población mundial seguirá sufriendo este problema con repercusiones en la mortalidad

infantil, retraso en el crecimiento y el desarrollo de la deficiencia de nutrientes esenciales

en su alimentación (Organización Mundial de la Salud, 2022).

Se desarrolló el proyecto, describiendo el consumo de sangrecita y bazo de bovino, como

un alimento innovador, saludable y útil para la salud, principalmente, para prevenir la

deficiencia de proteínas y hierro. El proyecto va dirigido a los estratos sociales de escasos

recursos por su bajo costo en relación con las carnes y embutidos tradicionales, que se

consumen con bastante frecuencia y desde el punto de vista nutricional son poco

saludables por su contenido de: sales de cura, preservantes, grasas saturadas,

saborizantes y colorantes sintéticos.

Año VII. Vol. 7. N°12. Enero – Junio. 2025 Hecho el depósito legal: FA2019000051

> FUNDACIÓN KOINONIA (F.K). Santa Ana de Coro, Venezuela.

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

Sin embargo, actualmente se puede encontrar en los mercados sangrecita criolla,

galletas, compotas y hamburguesas de sangrecita, así como charqui de bazo. Por

ejemplo, la fortificación de alimentos básicos que consume la mayoría de la población,

como el caso de las galletas, es la manera más eficaz para corregir las deficiencias de

nutrientes (Espinal Carrión et al., 2023).

En ese sentido, la elaboración de raviol de sangrecita y bazo de bovino, con sazón de

cabanossi, va a contribuir a la reducción de la malnutrición y anemia en el Perú. La

diversificación de los platos culinarios, van a complementar las deficiencias de proteínas

de elevado valor biológico y hierro hemínico de buena biodisponibilidad y a reducir los

elevados índices de malnutrición y anemia infantil.

Por lo tanto, el objetivo general de esta investigación es realizar un estudio sobre el raviol

de sangrecita y bazo de bovino que contribuya aportando proteínas y hierro en la

población escolar.

MÉTODO

El estudio se desarrolló entre marzo de 2023 y agosto de 2024 en el distrito de Huacho,

Provincia de Huaura, Región Lima. La propuesta se enmarcó en el campo de la ingeniería

y tecnología de alimentos, centrándose en la producción de raviol de sangrecita y bazo

de bovino con sazón de cabanossi para prevenir la deficiencia de proteínas y hierro en la

población escolar. El método de desarrollo en la presente investigación se apoya con un

enfoque cuantitativo, de alcance descriptivo y de tipo transversal. La investigación analizó

a 62 escolares del distrito de Huacho, con especial atención en un grupo de 5 a 12 años

de edad.

Al respecto, la preparación del raviol de sangrecita y bazo de bovino con sazón a

cabanossi, se adaptó a la Resolución Directoral Nº 013-2019-INACAL/DN, Carne y

productos cárnicos. Se optimizó la elaboración con un diseño de experimento DOE

(Superficie de respuesta), considerando dos factores continuos: "A" (cantidad de

Agroecología Global Revista Electrónica de Ciencias del Agro y Mar Año VII. Vol. 7. N°12. Enero – Junio. 2025

Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K).

Santa Ana de Coro, Venezuela.

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

sangrecita), "B" (cantidad de bazo) y "C" (cantidad de especies) y como variable respuesta, la evaluación sensorial, con dos puntos centrales y cuatro repeticiones, según modelo cuadrático.

Tabla 1. Modelo cuadrático.

Diseño de superficie de respuesta		Variables	Niveles	
Disello de	supernoie de respuesta	codificadas	Bajo Alto	
Factores	Sangrecita (Kg)	А	0,50	0.70
	Bazo de bovino (Kg)	В	0,30	0,50
	Especies (Kg)	С	0,10	0,20
Respuesta	Evaluación sensorial	Aceptabilidad	1	7

Elaboración: Los autores.

Se aplicó, además, la siguiente escala hedónica: 1 (Le disgusta mucho), 2 (Le disgusta moderado), 3 (Le disgusta poco), 4 (No le gusta, ni disgusta), 5 (Le gusta poco), 6 (le gusta moderado), 7 (Le gusta mucho).

El producto, pasta rellena con cantidades optimizadas de sangrecita, bazo de bovino desinfectadas, trituradas, sazonadas con especies, condimentos y aditivos alimentarios (humo líquido y polifosfato). Es enfundado en una capa de polisacárido obtenido de la fermentación bacteriana de un almidón (goma gellan), sometida a un proceso de secado en porciones de 22 cm de longitud. La presentación del producto terminado se realizó en bolsas selladas al vacío con etiquetado nutricional y almacenadas a temperatura de 4°C por 60 días.

Finalmente, utilizando la escala hedónica de 7 puntos, 62 escolares calificaron el producto mediante gestos de agrado y desagrado después de probarlo, complementariamente, se aplicaron métodos analíticos de la *Association of Analytical Communities* (AOAC) para evaluar las características físicas, químicas y microbiológicas de las muestras, asegurando así la calidad del producto.

RESULTADOS

Se presentan los resultados luego del desarrollo del método planteado.

Tabla 2. Factores experimentales y variable respuesta generados por computadora.

Sangrecita	Bazo de	Especies	Aceptabilidad	
(Kg)	bovino	(Kg)	(Escala	
	(Kg)		hedónica)	
0,50	0,50	0,20	1	
0,60	0,40	0,20	3	
0,60	0.50	0,15	2	
0,60	0,30	0,10	7	
0,70	0,40	0,15	3	
0,50	0,30	0,15	2	
0,60	0,40	0,15	6	
0,70	0,50	0,20	2	
0.50	0,4	0,10	1	
0.70	0,45	0,10	2	
0,60	0,40	0,15	3	
0,50	0,30	0,20	2	
0,50	0,40	0,10	2	
0,70	0,30	0,20	3	
0,55	0,50	0,10	2	
0,70	0,30	0,125	7	
0,60	0,50	0,15	4	
0,60	0,30	0,10	7	
0,60	0,40	0,20	5	

Elaboración: Los autores.

La tabla 2, muestra las corridas experimentales generadas por la computadora según diseño DOE de superficie de respuesta y su calificación de la aceptabilidad con la escala hedónica.

Tabla 3. Efectos estimados de factores e interacciones.

Efecto	Estimado	Error estándar	VIF (Factores de inflación de varianza)
Promedio	4,38226	0,578704	
A: Sangrecita	1,81863	0,73714	1,07441
B: Bazo de bovino	-2,86559	0,693412	1,04359
C: Especies	-0,781232	0,670487	1,06256
AA	-4,17054	1,12452	1,10716
AB	-0,938387	0,915014	1,05117
AC	-0,624693	0,86285	1,07097
BB	0,322272	1,1246	1,07518
BC	1,82098	0,857751	1,05835
CC	-0,123588	1,17286	1,10651

Elaboración: Los autores.

Cada uno de los factores de los componentes estimados y las interacciones entre estos componentes), alcanzaron su mayor valor de VIF =1,1065, en la interacción de las especies (Tabla 3). Se evidencia un diseño completamente ortogonal.

Tabla 4. Análisis de varianzas de factores experimentales y variable respuesta.

Fuente	Suma de Cuadrados	gl	Cuadrado Medio	Razón-F	Valor-P
A: Sangrecita	7,87816	1	7,87816	6,09	0,0357
B: Bazo	22,1045	1	22,1045	17,08	0,0025
C: Especies	1,75718	1	1,75718	1,36	0,2739
AA	17,8028	1	17,8028	13,75	0,0049
AB	1,36127	1	1,36127	1,05	0,3319
AC	0,678419	1	0,678419	0,52	0,4875
BB	0,106289	1	0,106289	0,08	0,7809
BC	5,83342	1	5,83342	4,51	0,0627
CC	0,0143714	1	0,0143714	0,01	0,9184
Error total	11,6487	9	1,2943		
Total (corr.)	74,4211	18			

Elaboración: Los autores.

Año VII. Vol. 7. Nº12. Enero - Junio. 2025 Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K).

Santa Ana de Coro, Venezuela.

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

A partir de los resultados de la tabla 4 se determina que:

R-cuadrada = 84,3475%

R-cuadrada (ajustada por gl) = 68,6951%

• Error estándar = 1,13767

• Error absoluto medio = 0,674523

Estadístico Durbin-Watson = 1,54417 (p=0,1707)

Autocorrelación residual de Lag 1 = 0,173331

El ANOVA identifica a los factores que más influyen en la aceptabilidad. El modelo

estadístico desarrollado explica una proporción considerable de las desviaciones en esta

variable (84,35% y 68,70% ajustado). Los resultados sugieren que el modelo es robusto

y confiable, pues los residuos no muestran patrones de dependencia. En resumen, este

análisis proporciona evidencia sólida de la relación entre los factores estudiados y la

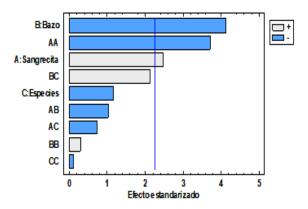
aceptabilidad.

Se establecieron como niveles óptimos de los factores:

Sangrecita: 0,70;

• Bazo de bovino: 0,30;

• Especies: 0,15.


La ecuación del modelo ajustado es:

Aceptabilidad(y) = -73,1753 + 287,464*Sangrecita -26,3819*Bazo -35,7546*Especies

- 208,527*Sangrecita² - 46,9193*Sangrecita*Bazo - 62,4693*Sangrecita*Especies +

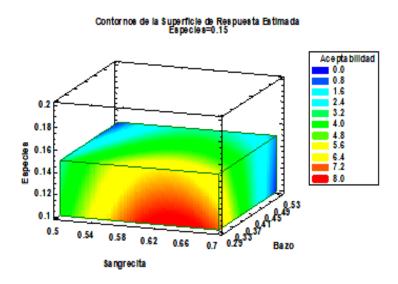

16,1136*Bazo² + 182,098*Bazo*Especies – 24,7177*Especies²

Diagrama de Pareto Estandarizada para Aceptabilidad

Figura 1. Diagrama de Pareto estandarizada para aceptabilidad. **Elaboración:** Los autores.

Los componentes de mayor relevancia son la concentración de sangrecita y de bazo de bovino, cuyas proporciones utilizadas en la mezcla influirá en la aceptabilidad del producto final (Figura 1).

Figura 2. Superficie de respuesta de aceptabilidad de raviol de sangrecita y bazo de bovino, con sazón de cabanossi.

Elaboración: Los autores.

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

En la figura de superficie de respuesta (figura 2), se evidencia que las concentraciones de los componentes de la mezcla que se pueden utilizar para elaborar un producto de buena aceptabilidad son: sangrecita de 0,58 a 0,70 Kg, bazo de bovino 0,30 Kg y especies de 0,15 Kg

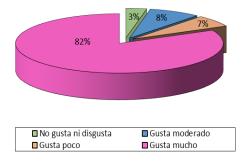


Figura 3. Grado de aceptación de raviol propuesto.

Elaboración: Los autores.

El raviol preparado con mezcla hasta 70 g% de sangrecita, 30 g% de bazo de bovino y 15g% de complementos, tiene una aceptación del 82% de los estudiantes que degustaron el producto, observándose que al 3% no fue de su agrado, y al 7% le gustó poco.

Tabla 5.Parámetros químicos de raviol de sangrecita y bazo de bovino, con sazón de cabanossi.

Componentes	Contenido /100g
Humedad (g)	81,39±0,03
Proteína (g)	12,39 ±0,01
Grasas (g)	1,61±0,02
Cenizas (g)	1,55± 0,01
Carbohidratos totales (g)	3,10± 0,05
Fibra dietaria total (g)	2,00± 0,026
Calorías (Kcal)	76,27±0,04
Hierro (mg%)	19,97±0,01
% Kcal de grasas	19,00±0,22
% kcal de carbohidratos	16,02±0,024
% kcal de proteínas	64,98±0,02

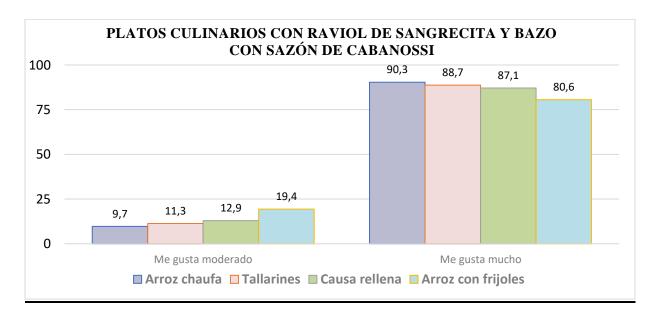

Fuente: Inspección & Testing Services del Perú S.A.C. (2024)

Tabla 6.Parámetro microbiológico de raviol de sangrecita y bazo de bovino, con sazón a cabanossi.

Criterios microbiológicos	1 día	15 días	30 días
Stapylococcus auresus (NMP/g)	< 3	<3	<3
Clostridium perfringes (UFC/g)	0	0	0
Salmonella (P-A Salmonella/25g)	Ausencia	Ausencia	Ausencia

Fuente: Inspección & Testing Services del Perú S.A.C. (2024)

El raviol de sangrecita y bazo de bovino con sazón a cabanossi tiene importantes concentraciones de proteínas (12,39±0,01g%), hierro (19,97±0,01 mg%) y bajo contenido graso (1,61±0,02 g%). Su parámetro microbiológico según la norma NTP 201.007:1999 (Rev. 2019). Carne y productos cárnicos y R. M. N°591-2008/MINSA (DIGESA, 2008), son conformes para su utilización en dietas infantiles.

Figura 4. Aceptabilidad de platos culinarios con raviol de sangrecita y bazo de bovino con sazón de cabanossi.

Elaboración: Los autores.

Año VII. Vol. 7. N°12. Enero – Junio. 2025 Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K).

Santa Ana de Coro, Venezuela.

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

Entre la variedad de platos culinarios que se pueden preparar para su uso en la alimentación escolar y han tenido muy buena aceptación son: arroz chaufa, tallarines, causa rellena y arroz con frijoles que aportan cantidades adecuadas de proteínas y hierro para prevenir la desnutrición y anemia ferropénica infantil.

DISCUSION

El Instituto Nacional de Salud (INS) del Ministerio de Salud de Perú recomienda el consumo de sangrecita en la alimentación diaria para mejorar los niveles de hierro, prevenir y tratar la anemia, especialmente en los niños y gestantes (Camposano Córdova, 2023). Por su parte, el bazo de bovino es una víscera que presenta un elevado contenido de hierro hemínico de 57,60 mg% con una alta absorción del 20 al 40%, también aporta 92 kcal%; 78,1 g%, de agua; 18,9 g% de proteínas y 0,1g% de grasas (Reyes García et al., 2017). Sin embargo, su sabor característico puede limitar su consumo. Por otro lado, las causas de la desnutrición y anemia infantil se asocian a factores económicos y sociodemográficos y a la ingesta inadecuada de una alimentación que aporte las cantidades de proteínas y hierro que cubran los requerimientos nutricionales diarios (Asmare, 2024; Gao, 2022).

Se observó que el raviol de sangrecita y bazo de bovino elaborado es de mejor calidad nutricional y mayor aporte de nutrientes que los embutidos comerciales. Su contenido graso total es menor (1,61±0,02 g%) comparado con el 34,3g% y 19,7g% de contenido graso del hot-dog y mortadela, y mayor de proteínas (12,39±0,01g%) frente al 11g% y 9,8g% del hot-dog y la mortadela. Sin embargo, lo que más resalta es la elevada diferencia en hierro (19,97±0,01 mg%) cuyo contenido en los embutidos de carne comerciales está dentro del intervalo de 1,30 a 2,0 mg% (Reyes García et al., 2017).

En tal sentido, entre los productos preparados con sangrecita y bazo de bovino abordados en estudios para mejorar los niveles de hemoglobina en niños, se pueden mencionar:

Año VII. Vol. 7. N°12. Enero – Junio. 2025 Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K).

Santa Ana de Coro, Venezuela.

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

 Pan dulce enriquecido con 10% de harina de cañihua y tres niveles de adición de bazo de bovino: 18% (F-1), 20% (F-2) y 22% (F-3). El pan dulce F-3, de buena aceptabilidad y cubre más del 50% de los requerimientos de hierro del preescolar (Cochevare & Sánchez, 2015),

 Galletas enriquecidas con 30% de bazo de bovino, de buena aceptación, con 26,79 g% de grasa, 20,1g% de proteínas y 53,67 mg% de hierro (Aco & Quispe, 2019);

 Galletas con harinas de tarwi (21%) y bazo (14%), con 20,14mg% de hierro y 14,6g% de proteínas (Apaza & Izquierdo, 2017).

Estos productos contribuyen con el aumento de los niveles de hemoglobina de 10,36 ± 0,62 g/dl a 11,07 ± 0,56 g/dl después del consumo de sangrecita (Arévalo & Avila, 2023); aumento eficaz de concentración de hemoglobina en niños de educación inicial que consumieron mousse de sangrecita durante 7 semanas (Suárez et al., 2023).

El desarrollo de esta investigación contribuyó en la promoción de la reducción de la anemia en niñas y niños de 6 a 35 meses de edad, 2,9 puntos porcentuales en los últimos cinco años. En el caso de la anemia leve en 1,3%, la moderada en 0,3% y la severa disminuyó en 0,2%. Sin embargo, los porcentajes aún son muy elevados, por lo que, este problema no solo debe enfocarse bajo el modelo biomédico tradicional. Es necesario abordarlo teniendo en cuenta los factores socioeconómicos, geográficos y étnicos que afectan el desarrollo y nutrición del niño, con énfasis en la prevención sustentada en la capacitación y motivación de las madres mediante preparaciones alimentarias con alto contenido de proteínas y hierro costo-efectivas (Black et al., 2021; Kowalski et al. 2023).

Agroecología Global

Revista Electrónica de Ciencias del Agro y Mar Año VII. Vol. 7. N°12. Enero – Junio. 2025

Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K).

Santa Ana de Coro, Venezuela.

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

CONCLUSIONES

El modelo de superficie de respuesta sugiere un rango óptimo de concentración para

cada componente: sangrecita (0,58 a 0,70 kg), bazo de bovino (0,30 kg) y especias (0,15

kg), para maximizar la aceptabilidad del producto.

El 82% de los participantes expresó su agrado por el raviol preparado con un 70% de

sangrecita, 30% de bazo de bovino y 15% de complementos. Un pequeño porcentaje

(7%) lo encontró poco agradable, mientras que un 3% no lo disfrutó."

El análisis nutricional del raviol de sangrecita y bazo de bovino con sazón a cabanossi

revela un perfil proteico (12,39±0,01g%) y de hierro (19,97±0,01 mg%), junto a un bajo

contenido graso (1,61±0,02 g%). El resultado microbiológico, evaluados según la norma

NTP 201.006:1999 (Rev. 2019), demuestran la conformidad del producto para su

inclusión en dietas infantiles.

En cuanto a la variedad de plato servidos con arroz chaufa, tallarines, causa rellena y

arroz con frijoles elaborados con raviol de sangrecita, son una opción nutritiva y agradable

para la alimentación escolar. Estos aportan las cantidades adecuadas de proteínas y

hierro necesarias para prevenir la desnutrición y anemia en los niños.

CONFLICTO DE INTERÉS

Los autores declaran que no tienen conflicto de interés en la publicación de este artículo.

FINANCIAMIENTO

No monetario.

AGRADECIMIENTO

A todos los actores sociales involucrados en el desarrollo de la investigación.

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

REFERENCIAS CONSULTADAS

- Aco, K. E., y Quispe, G. (2019). Formulación para elaborar galletas de harina de bazo de origen bovino (bos taurus) para niños en etapa preescolar. [Tesis de Grado, Universidad Nacional de San Agustín de Arequipa]. Repositorio Universidad Nacional de San Agustín de Arequipa. https://n9.cl/9wegn
- Anaya González, R., De La Cruz Fernández, E., Cóndor Alarcón, R., Espitia Rangel, E., Navarro Torres, R., y Rivera Villar, J. (2020). Evaluación de formulaciones de galletas antianémicas con diferentes contenidos de Quinua y diferentes contenidos en hierro hemínico, por reducción de anemia en ratas holtzman. Revista Boliviana de Química, 37(2), 74-84. https://n9.cl/6c6lh
- Apaza, K. D., y Izquierdo, Y. P. (2017). Valor nutritivo y aceptabilidad de la fortificación de galletas a base de harina de trigo (Triticum aestivum), harina de tarwi (Lupinus mutabilis) y bazo de res, para escolares, Arequipa 2017. [Tesis de Grado, Universidad Nacional de San Agustín de Arequipa. Repositorio Universidad Nacional de San Agustín De Arequipa. https://n9.cl/27df3
- Arcaya Moncada, M., García Arias, G., Coras Bendezú, D., Chávez Camacho, C., Poquioma Urguía, G., y Quispe Díaz, B. (2020). Efecto de la ingesta de galletas fortificadas con sangre bovina en hemoglobina de niños anémicos. *Revista Cubana de Enfermería*, 36(3), e3442. https://n9.cl/z3aci
- Arévalo, K. S., y Avila, C. D. (2023). *Influencia de la ingesta de sangrecita sobre la concentración de hemoglobina en preescolares*. [Tesis de Grado, Universidad César Vallejo. Trujillo]. Repositorio Universidad César Vallejo. https://n9.cl/j118g
- Asmare, A. A., & Agmas, Y. A. (2024). Determinants of coexistence of undernutrition and anemia among under-five children in Rwanda; evidence from 2019/20 demographic health survey: Application of bivariate binary logistic regression model. *Plos one*, 19(4), e0290111. https://doi.org/10.1371/journal.pone.0290111
- Association of Analytical Communities. (2023). *Official Methods of Analysis*. (22.ª Ed.). https://n9.cl/tfdcbo

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

- Black, M. M., Fernández Rao, S., Nair, K. M., Balakrishna, N., Tilton, N., Radhakrishna, K. V., Ravinder, P., Harding, K. B., Reinhart, G., Yimgang, D. P., & Hurley, K. M. (2021). A Randomized Multiple Micronutrient Powder Point-of-Use Fortification Trial Implemented in Indian Preschools Increases Expressive Language and Reduces Anemia and Iron Deficiency. *The Journal of Nutrition, 151*(7), 2029-2042. https://doi.org/10.1093/jn/nxab066
- Camposano Córdova, Y. F., De la Calle Robles, S. E., Millán Camposano, H., Villa Barrios, R., & De la Calle Castro, A. I. (2023). Efectividad de la educación demostrativa de productos andinos en la disminución de anemia en niños menores de 36 meses en una comunidad rural de la región de Huancayo, Perú. *Revista de investigación científica Siglo XXI*, 3(2), 49–59. https://doi.org/10.54943/rcsxxi.v3i2.352
- Cochevare, S. M., y Sánchez, R. M. (2015). Pan dulce enriquecido con harina de Chenopodium pallidicaule (cañihua) y extracto de bazo de ganado vacuno. [Tesis de Grado, Universidad Nacional José Faustino Sánchez Carrión]. Repositorio Universidad Nacional José Faustino Sánchez Carrión. https://n9.cl/jglknc
- Espinal Carrión, T., García Sampedro, G., Domínguez Rico, S., Ventura Montes, C., y Vázquez Martínez, A. (2023). Formulación de galletas fortificadas por sustitución parcial de harina de moringa y suero lácteo. *Archivos Latinoamericanos de Nutrición*, 73(1), 32-41. https://doi.org/10.37527/2023.73.1.004
- Gao, Y., Sheng, J., Mi, X., Zhou, M., Zou, S., & Zhou, H. (2022). Household Water Access, Dietary Diversity and Nutritional Status among Preschoolers in Poor, Rural Areas of Central and Western China. *Nutrients*, *14*(3), 458. https://doi.org/10.3390/nu14030458
- Inspection & Testing Services del Perú S.A.C. (2024). *Organismo evaluador de la conformidad con acreditaciones ante el INACAL DA*. https://n9.cl/xs82s
- Instituto Nacional de Estadística e Informática. (2024). El 43,1% de la población de 6 a 35 meses de edad sufrió anemia en el año 2023. https://n9.cl/x4bhy
- Kowalski, A. J., Mayen, V. A., de Ponce, S., Lambden, K. B., Tilton, N., Villanueva, L. M., Palacios, A. M., Reinhart, G. A., Hurley, K. M., & Black, M. M. (2023). The Effects of Multiple Micronutrient Fortified Beverage and Responsive Caregiving Interventions on Early Childhood Development, Hemoglobin, and Ferritin among Infants in Rural Guatemala. *Nutrients*, 15(9), 2062. https://doi.org/10.3390/nu15092062

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

- Organización Mundial de la Salud. (2022). Informe de las Naciones Unidas: Las cifras del hambre en el mundo aumentaron hasta alcanzar los 828 millones de personas en 2021. https://n9.cl/ert49
- Reyes García, M. (2017). *Tablas peruanas de composición de alimentos peruanos.* (10^a Ed). Ministerio de Salud, Instituto Nacional de Salud. https://n9.cl/k134y
- Reyes Narváez, S. E., Valderrama Ríos, O. G., Atoche Benavides, R. D. P., & Ponte Valverde, S. I. (2022). Factores asociados a la anemia infantil en una zona rural de Huaraz. *Comuni@cción*, 13(4), 301-309. https://doi.org/10.33595/2226-1478.13.4.782
- Rodrigo Barboza, S. A., Bustamante Tapia, Y., y Oblitas Gonzales, A. (2023) *Deficiencia de hierro y desarrollo psicomotor infantil en una zona rural de Chota, Perú 2022.* Universidad y Salud, 25(3), 43-4. https://doi.org/10.22267/rus.232503.311
- Ruiz Aquino, M., Quiñones Flores, M. M., Llanos de Tarazona, M. I., Victorio Onofre, C. A., & Chogas Asado, L. J. (2022). Características alimentarias, familiares y estado nutricional en niños de 4 a 36 meses con anemia en establecimientos de salud de Huánuco, Perú: un estudio observacional ambispectivo. Revista Científica de Salud UNITEPC, 9(2), 10-24. https://doi.org/10.36716/unitepc.v9i2.115
- Suárez, M. A. E., Cárdenas, M. C. T., Tintaya, L. M. F., Canales, C. P. E., Saccatoma, A. M. V., Carpio, Y. A. V., y Cámara, G. T. M. (2023). Efectividad del mousse de sangrecita y nivel de hemoglobina en los niños de 3 años en las instituciones educativas iniciales, Ica-Perú. *Revista Enfermería la Vanguardia*, 11(1), 3-12. https://n9.cl/085fhy
- Zapata, P. S. (2024). ¿Promesa incumplida?: Prevalencia y factores determinantes de la anemia infantil durante la pandemia de COVID-19 en Perú. *Politai: Revista de Ciencia Política*, *15*(24), 89-108. https://n9.cl/nrgka2

Brunilda Edith León-Manrique; María Del Rosario Farromeque-Meza; Rodolfo Willian Dextre-Mendoza; Oscar Otilio Osso-Arri

©2025 por los autores. Este artículo es de acceso abierto y distribuido según los términos y condiciones de la licencia Creative Commons Atribución-NoComercial-Compartirlgual 4.0 Internacional (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/).