Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

https://doi.org/10.35381/a.g.v6i11.4197

Impacto de especies forestales en la restauración de suelos de minería: Revisión sistemática

Impact of forest species on the restoration of mining soils: Systematic review

Edison Roberto Suntasig-Negrete

<u>esuntasig@uea.edu.ec</u>

Universidad Estatal Amazónica, Puyo, Pastaza

Ecuador

<u>https://orcid.org/0000-0002-4908-6795</u>

Karina María Elena Carrera-Sánchez <u>mcarrera@uea.edu.ec</u> Universidad Estatal Amazónica, Puyo, Pastaza Ecuador https://orcid.org/0000-0003-1438-4466

Paul Marcelo Manobanda-Pinto pmanobanda@uea.edu.ec Universidad Estatal Amazónica, Puyo, Pastaza Ecuador https://orcid.org/0000-0003-0207-9229

> Recibido: 18 de abril 2024 Revisado: 15 de mayo 2024 Aprobado: 01 de junio 2024 Publicado: 01 de julio de 2024

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

RESUMEN

El objetivo del presente estudio fue analizar el impacto de especies forestales en la restauración de suelos de minería: Una revisión sistemática. El método que se desarrolló en la presente investigación se apoyó en el enfoque cuantitativo. Además, se requirió de la investigación descriptiva. Cabe destacar que, la investigación, también fue de tipo documental-bibliográfica. Por otro lado, se llevó a cabo la revisión sistemática, que utilizó un protocolo y permitió organizar la información de cada artículo seleccionado. En cuanto a los resultados se observa que, la reforestación de áreas mineras degradadas mejora la estructura del suelo y juega un papel importante en la estabilización del terreno y la prevención de la erosión. En conclusión, la reforestación de suelos mineros con especies forestales es una estrategia integral que no solo restaura la salud del suelo y la biodiversidad, sino que también ayuda a reducir el cambio climático y mejorar el paisaje.

Descriptores: Especies forestales; minería; restauración. (Tesauro AGROVOC).

ABSTRACT

The aim of this study was to analyze the impact of forest species on the restoration of mining soils: A systematic review. The method developed in this research was based on the quantitative approach. In addition, descriptive research was required. It should be noted that the research was also of the documentary-bibliographic type. On the other hand, a systematic review was carried out, which used a protocol and made it possible to organize the information of each selected article. The results show that reforestation of degraded mining areas improves soil structure and plays an important role in stabilizing the soil and preventing erosion. In conclusion, reforestation of mining soils with forest species is a comprehensive strategy that not only restores soil health and biodiversity, but also helps to reduce climate change and improve the landscape.

Descriptors: Forest species; mining; restoration. (AGROVOC Thesaurus).

Agroecología Global Revista Electrónica de Ciencias del Agro y Mar Año VI. Vol. 6. N°11. Julio – Diciembre, 2024

Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K). Santa Ana de Coro, Venezuela.

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

INTRODUCCIÓN

La minería daña considerablemente el suelo, especialmente en áreas tropicales y áridas, después de la extracción de minerales, el suelo se vuelve lavado y carece de nutrientes, lo que reduce las condiciones para la recolonización de plantas nativas. Esto hace que sea necesario desarrollar planes para restaurar las zonas afectadas por la minería. En este orden de ideas, una estrategia efectiva para la restauración temprana de suelos degradados por minería es el uso de especies forestales, tanto nativas como exóticas, especialmente cuando se combina con otras técnicas de revegetación y manejo. Esto es esencial para recuperar la capacidad de funcionamiento de estos ecosistemas.

En este orden de ideas, los autores Smith Ramírez et al. (2015) destacan lo siguiente:

La prevención de desastres ecológicos debería estar en la agenda de las prioridades de realizar restauración ecológica. Por otra parte, se requiere una revisión del funcionamiento y resultados de los planes de reparación y compensación ambiental de manera que efectivamente se asegure el restablecimiento en forma equivalente del daño producido a largo plazo. (p. 19).

En los países en vías de desarrollo, la contaminación derivada de la actividad minera es una preocupación constante, ya que genera un impacto significativo en los ámbitos cultural, físico y socioeconómico (Paz-Barzola et al., 2022). La contaminación del suelo es causada por el vertimiento de aguas residuales, el uso inadecuado de fertilizantes, y la acumulación de desechos de hidrocarburos, metales pesados, y compuestos químicos, entre otros factores. Además, en muchos países del mundo, las actividades mineras y metalúrgicas han contaminado el suelo, el aire y el agua en diversas áreas, introduciendo materiales tóxicos como plomo, mercurio, cadmio, arsénico y zinc (Huaranga Moreno et al., 2021). A esto se suma que las tecnologías utilizadas en estos procesos no han sido completamente desarrolladas, lo que a menudo resulta en la aplicación de soluciones tecnológicas ineficaces (Fabelo Falcón, 2017).

Agroecología Global Revista Electrónica de Ciencias del Agro y Mar Año VI. Vol. 6. N°11. Julio – Diciembre, 2024

Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K). Santa Ana de Coro, Venezuela.

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

En tal sentido, la ciencia ha abordado el tema de la restauración ecosistémica de los suelos afectados por la actividad minera. En este orden, se han creado proyectos que simulan la sucesión ecológica en dichos ecosistemas, lo que se ha logrado mediante el establecimiento de especies vegetales capaces de iniciar el proceso, teniendo en cuenta los costos asociados a las actividades de rehabilitación minera. Estos proyectos tienen como objetivo rehabilitar los suelos mineros y reiniciar los flujos ecológicos o bioquímicos en ellos. Existen especies nativas, exóticas o endémicas entre las plantas seleccionadas para llevar a cabo este proceso en la práctica minera global, que tienen diferencias en su establecimiento y función en los suelos mineros; por lo tanto, es posible evaluar en la literatura científica la capacidad de algunas de estas especies para el desarrollo de procesos subsiguientes relacionados con la restauración del suelo. Por ello, para restaurar con éxito una comunidad vegetal degradada, es necesario tener conocimientos adecuados sobre la estructura y composición de las flores, así como su dinámica, mecanismos de regeneración y patrones de crecimiento (Molina-Guerra et al., 2023). Como consecuencia de la minería, se destaca que, en Perú, por ejemplo, en 2017, a causa de la minería aurífera se perdió un récord de 9.860 hectáreas de bosque, lo que representa el 38 % de toda la deforestación en Madre de Dios y el 6,9 % de toda la deforestación registrada ese año (Mamani et al., 2023). Así mismo, según los autores Mosquera-Vásquez y Tobón-Marín (2023) describen lo siguiente:

En Colombia el 80 % de los ecosistemas naturales han sido deforestados para el establecimiento de cultivos ilícitos, minería y ganadería. Frente a este panorama, el Gobierno Nacional anunció en el año 2020 la siembra de 180 millones de árboles hasta el año 2022 para recuperar las áreas degradadas y se basará en el Plan Nacional de Restauración para realizar el seguimiento a los ecosistemas. (p. 640)

Trabajos como perforación, detonación, carga, transporte, trituración y lixiviación son

Revista Electrónica de Ciencias del Agro y Mar Año VI. Vol. 6. N°11. Julio – Diciembre. 2024

Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K).

Santa Ana de Coro, Venezuela.

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

algunas de las tareas realizadas en un proyecto minero, las cuales implican el movimiento

de material y la transformación del entorno en el que se llevan a cabo, afectando también

a los elementos bióticos que habitan en esos ecosistemas alterados. Dependiendo del

tipo de mineral extraído, se asocia un ambiente físico específico al lugar de extracción,

ya sea una mina a cielo abierto o una mina subterránea. Los materiales movilizados

durante estas actividades generan un nuevo entorno geológico, al mismo tiempo que

dejan al descubierto áreas degradadas a lo largo del proyecto, como desmontes,

botaderos de estéril, botaderos de relaves y sistemas de extracción superficial de oro y

diamantes. En el plano geopolítico, la responsabilidad ambiental (RE) está ganando

relevancia, integrándose cada vez más en las agendas de las instituciones de

gobernanza a múltiples niveles debido a su impacto en la naturaleza (Roulier et al., 2020,

p. 20)

El objetivo del presente estudio es analizar el impacto de especies forestales en la

restauración de suelos de minería: Una revisión sistemática. Se busca sintetizar la

evidencia disponible en la literatura científica sobre los efectos de la restauración forestal

de suelos de minería.

MÉTODO

El método que se desarrolla en la presente investigación se apoya en el enfoque

cuantitativo. Además, se requirió de la investigación descriptiva que maneja objetivos

metódicos precisos para describir, analizar e interpretar algunas características

esenciales de hechos o fenómenos. Referido al impacto de especies forestales en la

restauración de suelos de minería: Una revisión sistemática (Sabino, 1992). Cabe

destacar que, la investigación, también es de tipo documental-bibliográfica. En este

sentido y con base en lo expuesto por Guerrero Dávila (2015), citado por Reyes y

Carmona (2020) la investigación documental es un tipo de investigación que involucra la

recopilación, selección y análisis de información de diferentes fuentes, como

25

Revista Electrónica de Ciencias del Agro y Mar Año VI. Vol. 6. N°11. Julio – Diciembre. 2024 Hecho el depósito legal: FA2019000051

FUNDACIÓN KOINONIA (F.K).
Santa Ana de Coro, Venezuela.

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

documentos, revistas, libros, grabaciones, filmaciones, periódicos, artículos de investigación y memorias de eventos. Por otro lado, se llevó a cabo la revisión sistemática, se utilizó un protocolo que permitió organizar la información de cada artículo seleccionado. En el contexto de la investigación, las revisiones sistemáticas son herramientas valiosas para sintetizar y evaluar críticamente la evidencia disponible sobre un tema particular. Una revisión sistemática es una revisión de la literatura científica bajo un proceso planificado y cuidadosamente ejecutado, con la finalidad de analizar los hallazgos previamente publicados (Quispe et al., 2021).

RESULTADOS

A continuación, se presentan los resultados luego del desarrollo del método planteado por los investigadores.

La reforestación de áreas mineras degradadas mejora la estructura del suelo y juega un papel importante en la estabilización del terreno y la prevención de la erosión. Las raíces de las plantas forestales crean una red subterránea que mejora la infiltración de agua y la aireación del suelo, lo que hace que el suelo sea más saludable y resistente.

En la tabla 1 se muestran trabajos científicos que abordan la temática planteada en este estudio.

Tabla 1. Revisión.

Autor(es)	Investigación	Aportes
Ticona	Reforestación, una	Existen diferentes mecanismos de preservación
Arapa et	percepción sobre la	que contribuyen a un programa de reforestación
al. (2024)	preservación del	adecuado, el uso y calidad del agua para el
	ambiente en la zona alta	riego, la fertilización, el mantenimiento, la
	circunlacustre de Puno.	reposición, la oxigenación y la gestión
		ambiental.

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

Autor(es)	Investigación	Aportes
Paredes-	Contaminación y	La actividad minera formal e informal continúa
Vilca et al. (2024)	pérdida de biodiversidad por actividades mineras y agropecuarias: Estado del arte.	creciendo en países dotados de recursos minerales, su expansión es influenciada por el incremento en el precio de los metales, no obstante, la minería formal es impulsada por los gobiernos. Las actividades desarrolladas en la minería y los campos agrícolas, entre otras, contribuyen a concentraciones significativas de metales pesados. Los daños causados por la actividad minera provienen principalmente de las rocas que se excavan para extraer minerales y eliminar suelos. El aumento de las actividades mineras ha llevado a la liberación de contaminantes peligrosos como el selenio, el aluminio y el
Canales Gutiérrez et al. (2022).	Remoción de plomo en suelos contaminados con relaves mineros a través del vermicompostaje.	Los estudios evidenciaron altos niveles de remoción de metales pesados utilizando la lombriz roja californiana, cuya capacidad para la acumulación de metales pesados en sus tejidos le posibilita disminuir las concentraciones en los suelos. El vermicompostaje reduce las concentraciones de plomo en los suelos contaminados con relaves mineros, lo que resulta en una tecnología útil debido a su facilidad de uso, bajo costo y la disponibilidad de insumos locales como tierra agrícola, estiércol de ovino, aserrín de madera y lombriz roja californiana.
Heras- Heras et	Potencial etnobotánico de especies forestales	Realización de acciones encaminadas a sensibilizar a los pobladores de la comunidad a

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

Autor(es)	Investigación	Aportes
al. (2023)	de interés medicinal.	través de la divulgación y conservación de los
		recursos forestales mediante el manejo
		sostenible de los mismos.
Perdomo- Millán (2023)	El desarrollo sostenible socioambiental y económico en la rehabilitación minera.	La minería es la actividad económica que permite la obtención de los recursos minerales a través de un conjunto de actividades que incluye la prospección, exploración y explotación de los depósitos. Como parte del proyecto minero, el plan de rehabilitación de las áreas dañadas por la minería debe incluir la identificación de los impactos ambientales, las medidas mitigadoras o correctoras, el plan de rehabilitación del medio ambiente alterado, el plan de seguimiento y control y el presupuesto ambiental.
Moreno Farfán (2023)	Restauración geomorfológica sobre depósitos de relaves: caso de estudio aplicado a la concesión minera Río Blanco, Ecuador.	La minería debe tener en cuenta sus obligaciones operativas, legales y éticas para lograr la compatibilidad con el respeto al medio ambiente y la sostenibilidad, esto se puede lograr mediante la explotación responsable de recursos y la generación de beneficios (ambientales, sociales y económicos) que igualen o superen los valores existentes. Dado que el proyecto minero se encuentra en áreas sensibles de alta montaña y cerca de otras áreas de recarga hídrica, se debe tratar de realizar la mejor gestión extractiva posible. Un manejo inapropiado, como la falta de un control ambiental adecuado, podría causar consecuencias ambientales catastróficas.

Elaboración: Los autores.

Revista Electrónica de Ciencias del Agro y Mar Año VI. Vol. 6. Nº11. Julio - Diciembre. 2024

Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K). Santa Ana de Coro, Venezuela.

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

El enriquecimiento de suelos postmineros con materiales orgánicos puede fomentar y

uniformizar el crecimiento de micorrizas y bacterias relacionadas, lo que facilita el

establecimiento de nuevas plantas en el futuro.

DISCUSIÓN

La introducción de especies forestales aumenta la biodiversidad significativamente. Estos

nuevos hábitats ayudan a la resiliencia y estabilidad del ecosistema al proporcionar

refugio y recursos a una variedad de organismos, desde microorganismos hasta grandes

mamíferos. La diversidad biológica es fundamental para la recuperación de los

ecosistemas porque permite una mayor adaptación a las perturbaciones y cambios

ambientales.

En este sentido, es posible recuperar áreas que han sufrido un grave deterioro ambiental

debido a los contaminantes emitidos por los relaves mineros. La fitorremediación es una

forma de mitigación. Desde la década de 1980, la revegetación se ha utilizado

tradicionalmente para estabilizar desechos sólidos y relaves mineros, así como para

restaurar áreas degradadas, con el fin de evitar la pérdida de suelo por erosión y

rehabilitar el medio ambiente (Pizarro et al., 2016). En varios escenarios de cambios en

el uso de la tierra y disturbios antropogénicos, como la minería y la agricultura como

principales actividades económicas, el banco de semillas se ha considerado un

importante indicador ecológico de degradación ambiental (Da Silva et al., 2021). Por otro

lado, el compostaje permite la transformación segura de desechos orgánicos en recursos

agrícolas. La definición de la FAO es la mezcla de materia orgánica en descomposición

que se utiliza en condiciones aeróbicas para mejorar la estructura del suelo y

proporcionarle nutrientes (Díaz et al., 2020). Igualmente, los elementos clave para el

desarrollo de un proyecto de restauración forestal se encuentra la preparación de suelo.

Trabajos como la descompactación, control de la erosión y corrección química son

recomendados para el desarrollo óptimo (Medina Avalos et al., 2021). El desarrollo de

29

Revista Electrónica de Ciencias del Agro y Mar Año VI. Vol. 6. N°11. Julio – Diciembre. 2024

Hecho el depósito legal: FA2019000051 FUNDACIÓN KOINONIA (F.K).

Santa Ana de Coro, Venezuela.

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

programas de restauración ecológica es una prioridad como medida para recuperar los

bienes y servicios ambientales.

CONCLUSIONES

La reforestación beneficia el ciclo de nutrientes, las plantas forestales absorben los

nutrientes del suelo y los devuelven a través de la descomposición de la materia orgánica,

lo que enriquece el suelo y mejora su fertilidad. Este proceso es esencial para mantener

un ciclo de nutrientes equilibrado y sostenible. El crecimiento de otras plantas y la salud

general del ecosistema se benefician de este proceso. Igualmente, la reforestación de

suelos mineros con especies forestales es una estrategia integral que no solo restaura la

salud del suelo y la biodiversidad, sino que también ayuda a reducir el cambio climático

y mejorar el paisaje. Esta práctica es fundamental para la recuperación sostenible de los

ecosistemas afectados por la minería y la creación de un entorno más equilibrado y

saludable. Además, la transformación de áreas mineras degradadas en paisajes verdes

y saludables mejora la estética del área y brinda servicios ecosistémicos valiosos, como

la regulación del clima, la purificación del agua y oportunidades para la recreación.

FINANCIAMIENTO

No monetario

AGRADECIMIENTO

A todos los actores sociales involucrados en el desarrollo de la investigación.

REFERENCIAS CONSULTADAS

Canales Gutiérrez, A., Belizario Quispe, G., Chui Betancur, H., y Roque Huanca, B.

(2022). Remoción de plomo en suelos contaminados con relaves mineros a través

30

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

del vermicompostaje. [Lead removal from mine tailings-contaminated soils through vermicomposting]. *RIA. Revista de investigaciones agropecuarias*, *48*(3), 267-273. https://n9.cl/hal8h

- Da Silva, C. V., Martins, S. V., Villa, P. M., Correa Kruschewsky, G., Dias, A. A., y Nabeta, F. H. (2021). Banco de semillas de relaves mineros como indicador de recuperación de vegetación en Mariana, Brasil. Revista de Biología Tropical, 69(2), 700-716. https://dx.doi.org/10.15517/rbt.v69i2.41800
- Díaz, L., Laguna, H., Gutiérrez, Y., Melo, A., y Vega, A. (2020). Tratamiento de suelos mineros mediante co-compostaje con Biochar, estiércol ovino y residuos orgánicos domiciliarios. [Treatment of mining soils by co-composting with Biochar, sheep manure and organic household waste]. *Revista de Medio Ambiente y Mineria*, *5*(2), 11-18. https://n9.cl/olt7h
- Fabelo Falcón, J. (2017). Propuesta de metodología para la recuperación de suelos contaminados. [Proposal for a methodology for the remediation of contaminated soils]. *Centro Azúcar*, *44*(1), 53-60. https://n9.cl/wtruw
- Heras Heras, M., Barrera Castro, M., Quevedo Amay, D., y Landívar Valverde, M. (2023). Potencial etnobotánico de especies forestales de interés medicinal. Revista Arbitrada Interdisciplinaria Koinonía, 8(15), 73-97. https://doi.org/10.35381/r.k.v8i15.2427
- Huaranga Moreno, F., Rodríguez Rodríguez, E., Méndez García, E., y Bernuí Paredes, F. (2021). Especies bioindicadoras de contaminación por relaves mineros en el Sector Samne, La Libertad-Perú, 2021. [Bioindicator species of mine tailings contamination in the Samne Sector, La Libertad-Peru, 2021]. Arnaldoa, 28(3), 633-650. https://dx.doi.org/10.22497/arnaldoa.283.28310
- Mamani, J., Álvarez, M., Portilla, R., Huaman, R., Larico, M., y Pilco, E. (2023). Efecto del cambio climático y la cobertura forestal en la pérdida de bosques en la selva amazónica de Perú, 2003-2019. [Effect of climate change and forest cover on forest loss in the Peruvian Amazon rainforest, 2003-2019]. *Alfa Revista de Investigación en Ciencias Agronómicas y Veterinaria*, 7(19), 88-102. https://doi.org/10.33996/revistaalfa.v7i19.200

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

- Medina Avalos, P., González Soria, L., Benítez León, E., y Villalba, G. (2021). Comparación del desarrollo inicial de cuatro especies forestales en parcelas de restauración con tres sistemas diferentes de preparación de suelo en el departamento de Caazapa, Paraguay. *Investigación Agraria*, 23(2), 86-93. https://doi.org/10.18004/investig.agrar.2021.diciembre.2302676
- Molina Guerra, V., Alanís Rodríguez, E., Collantes Chávez Costa, A., Mora Olivo, A., Buendía Rodríguez, E., y Rosa Manzano, E. (2023). Restauración de un fragmento de matorral espinoso tamaulipeco: respuesta de ocho especies leñosas. [Restoration of a fragment of Tamaulipan thorn scrub: response of eight woody species]. *Colombia Forestal*, 26(1), 36-47. https://doi.org/10.14483/2256201x.19056
- Moreno Farfán, R. (2023). Restauración geomorfológica sobre depósitos de relaves: caso de estudio aplicado a la concesión minera Río Blanco, Ecuador. [Geomorphological restoration of tailings deposits: case study applied to the Rio Blanco mining concession, Ecuador]. *LA GRANJA. Revista de Ciencias de la Vida*, 37(1), 130-141. https://doi.org/10.17163/lgr.n37.2023.10
- Mosquera Vásquez, M., y Tobón Marín, C. (2023). Efectos de la restauración de los bosques montanos tropicales sobre el funcionamiento ecohidrológico de cuencas hidrográficas. [Effects of tropical montane forest restoration on ecohydrological functioning of watersheds]. *Bosque* (*Valdivia*), 44(3), 639-653. https://dx.doi.org/10.4067/s0717-92002023000300639
- Paredes Vilca, O., Díaz, L., García, J., y Cruz, J. (2024). Contaminación y pérdida de biodiversidad por actividades mineras y agropecuarias: Estado del arte. [Pollution and biodiversity loss from mining and agricultural activities: state of the art]. *Revista de Investigaciones Altoandinas*, 26(1), 56-66. https://dx.doi.org/10.18271/ria.2024.594
- Paz Barzola, D., Escobar Segovia, K., y Jiménez Oyola, S. (2022). Evaluación de la calidad del suelo en núcleos poblados cercanos a la zona minera aurífera de Ponce Enríquez. [Assessment of soil quality in populated areas near the gold mining area of Ponce Enriquez]. *Enfoque UTE*, 13(4), 29-38. https://doi.org/10.29019/enfoqueute.811
- Perdomo-Millán, A. (2023). El desarrollo sostenible socioambiental y económica en la

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

rehabilitación minera. [Sustainable socio-environmental and economic development in mining rehabilitation]. *Minería y Geología*, *39*(1), 55-64. https://n9.cl/8chsj

- Pizarro, R., Flores, J., Tapia, J., Valdés Pineda, R., González, D., Morales, C., Sangüesa, C., Balocchi, F., y León, L. (2016). Especies forestales para la recuperación de suelos contaminados con cobre debido a actividades mineras. [Forest species for the remediation of copper-contaminated soils due to mining activities]. Revista Chapingo serie ciencias forestales y del ambiente, 22(1), 29-43. https://doi.org/10.5154/r.rchscfa.2014.06.026
- Quispe, A., Hinojosa-Ticona, Y., Miranda, H., y Sedano, C. (2021). Serie de Redacción Científica: Revisiones Sistemáticas. [Scientific Writing Series: Systematic Reviews]. Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo, 14(1), 94-99. https://dx.doi.org/10.35434/rcmhnaaa.2021.141.906
- Reyes, L., y Carmona, F. (2020). La investigación documental para la comprensión ontológica del objeto de estudio. [Documentary research for an ontological understanding of the object of study]. (Guia). Universidad Simón Bolívar. https://n9.cl/zzvag
- Roulier, C., Anderson, C., Ballari, S., y Nielsen, E. (2020). Estudios sociales y socioecológicos sobre restauración ecológica: Una revisión de la literatura a escala global e iberoamericana. [Social and socio-ecological studies on ecological restoration: A review of the literature at the global and Ibero-American scales Latin American literatura]. *Ecología austral*, 30(1), 19-32. https://n9.cl/b75s6
- Sabino, C. (1992). El proceso de investigación. [The research process]. Ed. Panapo, Caracas. https://n9.cl/yjoee
- Smith Ramírez, C., González, M., Echeverría, C., y Lara, A. (2015). Estado actual de la restauración ecológica en Chile, perspectivas y desafíos. [Current state of ecological restoration in Chile Perspectives and challenges]. *Anales del Instituto de la Patagonia*, 43(1), 11-21. https://dx.doi.org/10.4067/S0718-686X2015000100002

Edison Roberto Suntasig-Negrete; Karina María Elena Carrera-Sánchez; Paul Marcelo Manobanda-Pinto

Ticona Arapa, H., Millones Chafloque, A., Zela Payi, N., Chambi Condori, N., y Sucari León, A. (2024). Reforestación, una percepción sobre la preservación del ambiente en la zona alta circunlacustre de Puno. [Reforestation, a perception on the preservation of the environment in the high circumlacustrine zone of Puno]. Alfa Revista de Investigación en Ciencias Agronómicas y Veterinaria, 8(22), 191-207. https://doi.org/10.33996/revistaalfa.v8i22.258

©2024 por los autores. Este artículo es de acceso abierto y distribuido según los términos y condiciones de la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) (https://creativecommons.org/licenses/by-nc-sa/4.0/).